
Weighted Pushdown Systems and their Application to
Interprocedural Dataflow Analysis

�

Thomas Reps
�
, Stefan Schwoon

�
, and Somesh Jha

�
�

Comp. Sci. Dept., University of Wisconsin;
�
reps,jha � @cs.wisc.edu�

Fakultät Inf., Universität Stuttgart; schwoosn@informatik.uni-stuttgart.de

Abstract. Recently, pushdown systems (PDSs) have been extended to weighted PDSs, in
which each transition is labeled with a value, and the goal is to determine the meet-over-all-
paths value (for paths that meet a certain criterion). This paper shows how weighted PDSs
yield new algorithms for certain classes of interprocedural dataflow-analysis problems.

1 Introduction
This paper explores a connection between interprocedural dataflow analysis and model
checking of pushdown systems (PDSs). Various connections between dataflow analysis
and model checking have been established in past work, e.g., [6, 9, 23, 27, 28]; however,
with one exception ([9]), past work has shed light only on the relationship between
model checking and bit-vector dataflow-analysis problems, such as live-variable anal-
ysis and partial-redundancy elimination. In contrast, the results presented in this paper
apply to (i) bit-vector problems, (ii) the one non-bit-vector problem addressed in [9], as
well as (iii) certain dataflow-analysis problems that cannot be expressed as bit-vector
problems, such as linear constant propagation. In general, the approach can be applied
to any distributive dataflow-analysis problem for which the domain of transfer functions
has no infinite descending chains. (Safe solutions are also obtained for problems that
are monotonic but not distributive.)

The paper makes use of a recent result that extends PDSs to weighted PDSs, in
which each transition is labeled with a value, and the goal is to determine the meet-
over-all-paths value (for paths that meet a certain criterion) [25]. The paper shows how
weighted PDSs yield new algorithms for certain classes of interprocedural dataflow-
analysis problems. These ideas are illustrated by the application of weighted PDSs to
linear constant propagation.

The contributions of the paper can be summarized as follows:

– Conventional dataflow-analysis algorithms merge together the values for all states
associated with the same program point, regardless of the states’ calling context.
With the dataflow-analysis algorithm obtained via weighted PDSs, dataflow queries
can be posed with respect to a regular language of stack configurations. Conven-
tional merged dataflow information can also be obtained by issuing appropriate
queries; thus, the new approach provides a strictly richer framework for interproce-
dural dataflow analysis than is provided by conventional interprocedural dataflow-
analysis algorithms.

– Because the algorithm for solving path problems in weighted PDSs can provide a
witness set of paths, it is possible to provide an explanation of why the answer to a
dataflow query has the value reported.

The algorithms described in the paper have been implemented in a library that solves
reachability problems on weighted PDSs [24]. The library has been used to create proto-
type implementations of context-sensitive interprocedural dataflow-analysis algorithms
for linear constant propagation [22] and the detection of affine relationships [16]. The

�
Supported by ONR contract N00014-01-1-0708.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Weighted Pushdown Systems and their Application to Interprocedural
Dataflow Analysis

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Wisconsin ,Computer Sciences Department,716 Langdon
Street,Madison,WI,53706

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

20

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

library is available on the Internet, and may be used by third parties in the creation of
dataflow-analysis tools.

The remainder of the paper is organized as follows: Section 2 introduces terminol-
ogy and notation used in the paper, and defines the generalized-pushdown-reachability
(GPR) framework. Section 3 presents the algorithm from [25] for solving GPR prob-
lems. Section 4 presents the new contribution of this paper—the application of the GPR
framework to interprocedural dataflow analysis. Section 5 discusses related work. Ap-
pendix A describes an enhancement to the algorithm from Section 3 to generate a wit-
ness set for an answer to a GPR problem.

2 Terminology and Notation
In this section, we introduce terminology and notation used in the paper.

2.1 Pushdown Systems
A pushdown system is a transition system whose states involve a stack of unbounded
length.

Definition 1. A pushdown system is a triple ���������
	��
��� , where � and 	 are finite
sets called the control locations and the stack alphabet, respectively. A configuration
of � is a pair ��������� , where ����� and ����	�� . � contains a finite number of rules
of the form ������� �"! #�$����&%'�
��� , where �(�'�&%)�*� , ���*	 , and �+�*	�� , which define a
transition relation , between configurations of � as follows:

If -.�����(���/�)! # $ ���0%1�
��� , then �������2�3%4�6587
9�:�;, $ ���&%'�
�<�3%=� for all �3% �>	�� .
We write ?@,�$A? % to express that there exists some rule - such that ? 5B7C9�;�:,D$E? % ; we
omit the index � if � is understood. The reflexive transitive closure of , is denoted by,F� . Given a set of configurations G , we define H&I
J:�K�1G��.LM�+N�?O%"PRQS?���GTL0?O%U,F�V?XW
and HRY[Z]\ � ��G��^LM�_N�? % PXQS?`�aGbL2?@, � ? % W to be the sets of configurations that are
reachable—backwards and forwards, respectively—from elements of G via the transi-
tion relation.

Without loss of generality, we assume henceforth that for every ���(���/�)! #c���/%����d� we
have P �eP(fhg ; this is not restrictive because every pushdown system can be simulated
by another one that obeys this restriction and is larger by only a constant factor; e.g.,
see [13].

Because pushdown systems have infinitely many configurations, we need some
symbolic means to represent sets of configurations. We will use finite automata for
this purpose.

Definition 2. Let ���h�����
	��
��� be a pushdown system. A � -automaton is a quintuplei ���1j��
	��C#k� ���
lV� where jEmn� is a finite set of states, #poqjAr>	hrsj is the set
of transitions, and l�o�j are the final states. The initial states of

i
are the control

locations � . A configuration ��������� is accepted by
i

if �utvwv #���x for some final state x .
A set of configurations of � is regular if it is recognized by some � -automaton. (We
frequently omit the prefix � and simply refer to “automata” if � is understood.)

A convenient property of regular sets of configurations is that they are closed un-
der forwards and backwards reachability. In other words, given an automaton

i
that

accepts the set G , one can construct automata
izy|{~}
�

and
i�y��������

that accept H2I
JK����G��
and H�Y�Z]\ � ��G�� , respectively. The general idea behind the algorithm for H&I
J:� [3, 8] is as
follows:

Let �p� �'���
	 �C�e� be a pushdown system and
i �c��j��
	 �]# � �
���
lV� be a � -

automaton accepting a set of configurations G . Without loss of generality we assume
that

i
has no transition leading to an initial state. H2I
J��;��G�� is obtained as the language

of an automaton
i y|{~}�� � ��j��
	 �]#q�
���
lV� derived from

i
by a saturation procedure.

The procedure adds new transitions to
i

according to the following rule:

If � �(��� ��! # ���&%'�
��� and �0% tvwv #F� x in the current automaton, add a transition�������U�
xK� .
In [8] an efficient implementation of this procedure is given, which requires� �
P j P � P �>P � time and

� �
P j P|P �>P��aP # � P � space. Moreover, another procedure (and im-
plementation) are presented for constructing a � -automaton that accepts H�Y�Z]\ � �1G�� . In
Section 3, we develop generalizations of these procedures. (We present these extensions
for H&I
J[� ; the same basic idea applies to HRY[Z]\ � , but is omitted for lack of space.)

2.2 Weighted Pushdown Systems
A weighted pushdown system is a pushdown system whose rules are given values from
some domain of weights. The weight domains of interest are the bounded idempotent
semirings defined in Definition 3.

Definition 3. A bounded idempotent semiring is a quintuple ���s��� �
	 ������
�� , where
� is a set, � and
 are elements of � , and � (the combine operation) and 	 (the extend
operation) are binary operators on � such that
1. ���s���.� is a commutative monoid with � as its neutral element, and where � is

idempotent (i.e., for all � ��� , ���������).
2. ���s��	.� is a monoid with the neutral element
 .
3. 	 distributes over � , i.e. for all �&�
���
?���� we have

��	k����� ? � �h����	�� ���k����	 ? � and �������O��	 ?<������	 ? ���a����	 ? � �
4. � is an annihilator with respect to 	 , i.e., for all � ��� , ��	����!�V�"�#	�� .
5. In the partial order $ defined by: %&�&�'� ���s�(��$)� iff �*�!���+� , there are no

infinite descending chains.

Definition 4. A weighted pushdown system is a triple , ���w� �.-3�'//� such that ����'���
	��
��� is a pushdown system, -F�����s��� �
	 �'�R��
�� is a bounded idempotent semiring,
and /�L0�A#0� is a function that assigns a value from � to each rule of � .

Let 1��a� � be a sequence of rules. Using / , we can associate a value to 1 , i.e.,
if 1k�32 - � ���4���|��-6587 , then we define 92��1 � LM�:/U�=- � �;	<�����=	!/U�=-85�� . Moreover, for any
two configurations ? and ? % of � , we let H>�@?.A(��?[�
? % � denote the set of all rule sequences
2 - � �4����� ��-65B7 that transform ? into ? % , i.e., ? 587�C�9�]�R� ,ED�D4Da5B7�FO9� �R�|, ?O%
Definition 5. Given a weighted pushdown system , �h�w� �G-��'//� , where �����'���
	��
��� ,
and a regular set GEoF��r@	�� , the generalized pushdown reachability (GPR) prob-
lem is to find for each ?d� �Er 	 � :

– HS�'? � LM�JI N�92��1 � PK1T�^H>�@?.AX�'?K�
? % �]�
? % �sG W ;
– a witness set of paths L3�'? �"o MNPORQTS H&�@?.A���?[�
? %8� such that IU QKVXWYNPZ 92��1 ���"HS�'? � .

Notice that the extender operation 	 is used to calculate the value of a path. The
value of a set of paths is computed using the combiner operation � . In general, it is
enough for L3�'?|� to contain only a finite set of paths whose values are minimal elements
of N�92��1 �.P[1 �`H>�@?.A��'?[�
?O%4�]� ?O%)�*G W , i.e., minimal with respect to the partial order $
defined in Definition 3(5).

3 Solving the Generalized Pushdown Reachability Problem
This section presents the algorithm from [25] for solving GPR problems.

For the entire section, let , denote a fixed weighted pushdown system: , ��w� �G-��'//� , where � � �����
	��
��� and -�� ���s�
� ��	 ������
�� ; let G denote a fixed reg-
ular set of configurations, represented by a � -automaton

i �6�1j��
	��C# � �
���
lV� such
that

i
has no transition leading to an initial state.

The GPR problem is a multi-target meet-over-all-paths problem on a graph. The
vertices of the graph are the configurations of � , and the edges are defined by � ’s
transition relation. The target vertices are the vertices in G . Both the graph and the set
of target vertices can be infinite, but have some built-in structure to them; in particular,G is a regular set.

Because the GPR problem concerns infinite graphs, and not just an infinite set of
paths, it differs from other work on meet-over-all-paths problems. As in the ordinary
pushdown-reachability problem [3, 8], the infinite nature of the (GPR) problem is ad-
dressed by reporting the answer in an indirect fashion, namely, in the form of an (anno-
tated) automaton. An answer automaton without its annotations is identical to an

iey|{�}
�
automaton created by the algorithm of [8]. For each ?>�FH&I
J:�K�1G�� , the values of HS�'?|�
and L3�'? � can be read off from the annotations by following all accepting paths for ? in
the automaton; for ?���@H2I
J[����G�� , the values of HS��? � and L3��? � are � and � , respectively.

The algorithm is presented in several stages:
– We first define a language that characterizes the sequences of transitions that can

be made by a pushdown system � and an automaton
i

for G .
– We then turn to weighted pushdown systems and the GPR problem. We use the

language characterizations of transition sequences, together with previously known
results on a certain kind of grammar problem [15, 17] to obtain a solution to the
GPR problem.

– However, the solution based on grammars is somewhat inefficient; to improve the
performance, we specialize the computation to our case, ending up with an algo-
rithm for creating an annotated automaton that is quite similar to the H&I
J � algorithm
from [8].

3.1 Languages that Characterize Transition Sequences
In this section, we make some definitions that will aid in reasoning about the set of paths
that lead from a configuration ? to configurations in a regular set G . We call this set the
reachability witnesses for ?d�>�Tr�	�� with respect to G : ReachabilityWitnesses ��?[�
G�� �
M N O QTS H>�@?.A��'?[�
?O%8� .

It is convenient to think of PDS � and � -automaton
i

(for G) as being combined in
sequence, to create a combined PDS, which we will call � i . � i ’s states are ��� j �j , and its rules are those of � , augmented with a rule ��x ��� �)! # �'x;%����]� for each transitionx��v # x[% in

i
’s transition set # � .

We say that a configuration ?s� � �(��� � � � �4�����
	R� is accepted by � i if there is a
path to a configuration �'x��0�
�]� such that x����>l . Note that because

i
has no transitions

leading to initial states, � i ’s behavior during an accepting run can be divided into two
phases—transitions during which � i mimics � , followed by transitions during which� i mimics

i
: once � i reaches a state in ��j v �V� , it can only perform a sequence of

pops, possibly reaching a state in l . If the run of � i does reach a state in l , in terms
of the features of the original � and

i
, the second phase corresponds to automaton

i
accepting some configuration ?|% that has been reached by � , starting in configuration ? .
In other words, � i accepts a configuration ? iff ?d�^H2I
J��;��G�� .

The first language that we define characterizes the pop sequences of � i . A pop
sequence for xF��j , ��� 	 , and xK%z� j is a sequence of � i ’s transitions that (i)

starts in a configuration �'x ���&�d� , (ii) ends in a configuration �'x�%����d� , and (iii) through-
out the transition sequence the stack is always of the form �.%8� for some non-empty
sequence �3%V� 	�� , except in the last step, when the stack shrinks to � . Because �
remains unchanged throughout a pop sequence, we need only consider pop sequences
of a canonical form, i.e., those that (i) start in a configuration �'x ���/� , and (ii) end in a
configuration �'xK%1����� . The pop sequences for a given x , � , and x;% can be characterized by
the complete derivation trees3 derived from nonterminal PS W���� � � � O Z , using the grammar
shown in Figure 1.

Production for each�
	��
PS
���� ��� ��������� � �� �����! "�$#�&%��
PS
 '�� �(� ' � � ���) *,+.-0/21 �3)4*5�6+
7�/8 :9�+;*: =<�6>(�
PS
 '�� �(� ���?� PS
 '��@� ����� �
�) *,+.-0/21 �3)4* � +
- � /A :9B+5*: =<C+2�D :E�GFH�
PS
 '�� �(� ���?� PS
 ' � � � � � � � � PS
�� � � � � � � �
�) *,+.-0/21 �3)4*5�6+
-0� -0� ��/C :9B+5*= :<C+2�H+����! :E

Fig. 1. A context-free language for the pop sequences of � i , and the � i rules that
correspond to each production.

Theorem 1. PDS � i has a pop sequence for x , � , and x�% iff nonterminal PS W���� � � � O Zof the grammar shown in Figure 1 has a complete derivation tree. Moreover, for each
derivation tree with root PS W@��� � � � O Z , a preorder listing of the derivation tree’s production
instances (where Figure 1 defines the correspondence between productions and PDS
rules) gives a sequence of rules for a pop sequence for x , � , and x;% ; and every such
sequence of rules has a derivation tree with root PS W���� � � � O Z .
Proof (Sketch). To shrink the stack by removing the stack symbol on the left-hand
side of each rule of � i , there must be a transition sequence that removes each of
the symbols that appear in the stack component of the rule’s right-hand side. In other
words, a pop sequence for the left-hand-side stack symbol must involve a pop sequence
for each right-hand-side stack symbol.

The left-hand and right-hand sides of the productions in Figure 1 reflect the pop-
sequence obligations incurred by the corresponding rule of � i .

To capture the set ReachabilityWitnesses ��� �(��� � � � �4���~� 	R�]�CG�� , where G is recog-
nized by automaton

i
, we define a context-free language given by the set of produc-

tions

Accepting 2 � � � � ���4��� 	@7 W4I(� ��Z # PS W4I(� � C � � C Z PS W@� C � �KJ � � J Z �4��� PS W��
LHM C � � LN� �.Zfor each x�O)�sj�� for
�fQP fSR v
UT and x � l
Accepted 2 � � � � �4���~� 	@7 W4I�Z # Accepting 2 � � � � �4���~� 	[7 W4I(� �GZ for each x � l

This language captures all ways in which PDS � i can accept ������� � � � �4����� 	 � : the
set of reachability witnesses for � �(��� � � � ���4��� 	 � corresponds to the complete deriva-
tion trees derivable from nonterminal Accepted 2 � � � � ���4�~� 	 7 W4I�Z . The subtree rooted at
PS W��
V6M C � � V
� �
V�Z gives the pop sequence that � i performs to consume symbol � O . (If there
are no reachability witnesses for ���(��� � � � ���4��� 	 � , there are no complete derivation trees
with root Accepted 2 � � � � ������� 	 7 W4I�Z .)
3.2 Weighted PDSs and Abstract Grammar Problems
Turning now to weighted PDSs, we will consider the weighted version of � i , denoted
by , i

, in which weighted PDS , is combined with
i

, and each rule �'x ���/�)! # ��x;%����]�
3 A derivation tree is complete if it has is a terminal symbol at each leaf.

that was added due to transition x �v # x[% in
i

’s transition set # � is assigned the weight

 .

We are able to reason about semiring sums (�) of weights on the paths that are
characterized by the context-free grammars defined above using the following concept:

Definition 6. [15, 17] Let ���)���U� be a semilattice. An abstract grammar over ���U���U�
is a collection of context-free grammar productions, where each production � has the
form � � #��
	K� � � ���4���O� � 5 ���
Parentheses, commas, and ��	 (where � is a production) are terminal symbols. Every
production � is associated with a function ��	2L�� 5 #
� . Thus, every string � of ter-
minal symbols derived in this grammar (i.e., the yield of a complete derivation tree)
denotes a composition of functions, and corresponds to a unique value in � , which we
call �������<���X� (or simply ���������X� when � is understood). Let ��� � � � denote the strings
of terminals derivable from a nonterminal

�
. The abstract grammar problem is to

compute, for each nonterminal
�

, the value

� � � � �"LM� �� Q�����W��(Z ����� � ���X� �

Because the complete derivation trees with root Accepted 2 � � � � �4���~� 	[7 W4I�Z encode
the transition sequences by which , i

accepts � �(��� � � � �4����� 	R� , to cast the GPR as a
grammar problem, we merely have to attach appropriate production functions to the
productions so that for each rule sequence 1 , and corresponding derivation tree (with
yield) � , we have 92��1 � � �!�"�#�<�#�U� . This is done in Figure 2: note how functions � � , ��$,
and �"% place /U�=-K� at the beginning of the semiring-product expression; this corresponds
to a preorder listing of a derivation tree’s production instances (cf. Theorem 1).

Production for each&#'�(
PS)+*-, ./, *�0 1325476 &98-(&;:=<�>�<?:A@+(�B 2DC
4 6FE '&9G/(

PS) HA, .7, H 0 1I254KJ &98-(L ENM O <�>�PRQ 2 M O @;<�S/PTBVUW< O BYX
4 JZE\[&�LK(&;]7(

PS) HA, .7, *#1^254K_ & PS) H 0 , . 0 , *�1 (L ENM O <�>�PRQ 2 M O @;<�>`@+P�BaU3< O BaX�<b:�Bac
4/_ E\d"e�f [&�LK(hg e&�i=(

PS) HA, .7, *#1 254Aj & PS) H 0 , . 0 , * 0 1 < PS)+* 0 , . 0 0 , *�1 (kL ENM O <�>�PRQ 2 M O @ <�> @ > @ @ P�BVUW< O BaX�<b:=<?: @ Bac
4 j E\d"e�f d�lmf [&�LK(hg e g l&9n/(

Accepting o > 6 > Jbfpfpf >!q=r) H�, *#1 2s4/t & PS) HA, .pu?, *#u#1 < PS)+*#u?, .wvw, *xv?1 < fpfyf < PS)+*xzA{=u?, .wz7, *�1 (:y|RBYc}<
for
'�~��T~��3��'/<

and
:�BY�

4/t E\d"e�6Af d"e!Jbfpfyf-d"e q f e�6 g e=J g fpfpf g e q&;�7(
Accepted o > 6 > JRfpfyf >!q7r) Hp1 2s4/� & Accepting o > 6 > Jbfpfpf >!q!r) H�, *�1 (:�BY�
4/� E\d"e�f e

Fig. 2. An abstract grammar problem for the GPR problem.
To solve the GPR problem, we appeal to the following theorem:

Theorem 2. [15, 17] The abstract grammar problem for � and ���U�A�U� can be solved
by an iterative computation that finds the maximum fixed point when the following con-
ditions hold:

1. The semilattice ���U���U� has no infinite descending chains.

2. Every production function � 	 in � is distributive, i.e.,

�2� �O C Q�� C
�4�����|� �O F Q�� F

� � �W O C ������� � O F ZPQ�� C
��������� �

F
�2�	� O C �4���4�O�
� O F �

for arbitrary, non-empty, finite index sets
� � ���4��� � � 5 .

3. Every production function ��	 in � is strict in � in each argument.

The abstract grammar problem given in Figure 2 meets the conditions of Theorem 2
because

1. By Definition 3, the � operator is associative, commutative, and idempotent; hence���s���.� is a semilattice. By Definition 3(5), ���s�
�.� has no infinite descending
chains.

2. The distributivity of each of the production functions � � , �4��� , ��� over arbitrary,
non-empty, finite index sets follows from repeated application of Definition 3(3).

3. Production functions �
$, �4��� , ��� are strict in � in each argument because � is an
annihilator with respect to 	 (Definition 3(4)). Production functions � � and � � are
constants (i.e., functions with no arguments), and hence meet the required condition
trivially.

Thus, one algorithm for solving the GPR problem for a given weighted PDS , , initial
configuration � �(��� � � � �4����� 	R� , and regular set G (represented by automaton

i
) is as

follows:

– Create the combined weighted PDS , i
.

– Define the corresponding abstract grammar problem according to the schema shown
in Figure 2.

– Solve this abstract grammar problem by finding the maximum fixed point using
chaotic iteration: for each nonterminal

�
, the fixed-point-finding algorithm main-

tains a value
�� � � , which is the current estimate for
�

’s value in the maximum
fixed-point solution; initially, all

� � � values are set to � ;
�� � � is updated when-
ever a value

�	�z� changes, for any � used on the right-hand side of a production
whose left-hand-side nonterminal is

�
.

3.3 A More Efficient Algorithm for the GPR Problem
The approach given in the previous section is not very efficient: for a configuration���(��� � � � �������
	R� , it takes ���
P j^P 	�� � P l P � time and space just to create the grammar pro-
ductions in Figure 2 with left-hand-side nonterminal Accepting 2 � � � � �4�����
	@7 W4I(� �GZ . How-
ever, we can improve on the algorithm of the previous section because not all instan-
tiations of the productions listed in Figure 2 are relevant to the final solution; we want
to prevent the algorithm from exploring useless nonterminals of the grammar shown in
Figure 2.

Moreover, all GPR questions with respect to a given target-configuration set G in-
volve the same subgrammar for the PS nonterminals. As in the (ordinary) pushdown-
reachability problem [3, 8], the information about whether a complete derivation tree
with root nonterminal PS W�� � � � � O Z exists (i.e., whether PS W���� � � � O Z is a productive nonter-
minal) can be precomputed and returned in the form of an (annotated) automaton of
size

� �
P j P|P �>P �+P # � P � . Exploring the PS subgrammar lazily saves us from having
to construct the entire PS subgrammar. Productive nonterminals represent automaton
transitions, and the productions that involve any given transition can be constructed
on-the-fly, as is done in Algorithm 1, shown in Figure 3.

It is relatively straightforward to see that Algorithm 1 solves the grammar prob-
lem for the PS subgrammar from Figure 2: � YKI���Z J \ contains the set of transitions

Algorithm 1
Input: a weighted pushdown system , ���w� �.-3�'//� ,

where ���������
	��
��� and -������s�
� ��	 ���R�4
�� ;
a � -automaton

i ����j �
	��C# � �
���
lV� that accepts G ,
such that

i
has no transitions into � states.

Output: a � -automaton
iVy|{~}
� �h��j��
	 �]#q�
���
lV� that accepts H2I
JK����G�� ;

a function
 that maps every �'x ���U�
x�%8� �s# to the value of � � � PS W���� � � � O Z �in the abstract grammar problem defined in Figure 2.

1 procedure update(?]�
-[���)
2 begin
3 # LM� # � N4?CW ;
4

� ?��"L��

� ?����a��/U�'-[� 	

���z�.
��
�>	!�4���6	
����z�
P � P �����KT
5 if
���?�� changed value then � Y[I��[Z JO\�L�� � YKI���Z J \ �`N6?CW
6 end
7
8 # L�� # � T
��"�0T � Y[I��[Z JO\�L�� # � ;
9 for all ?"� # � do
�� ?��"L��<
 ;

10 for all -V�h� �(��� �)! # ���&%������"�`� do ��H����K\�J �
�������U�'�0%8�]�
-[�|���
� ;
11 while � Y[I��[ZOJ \ �� � do
12 select and remove a transition ? ���'x ���X�
xK%w� from � Y[I��[Z JO\ ;
13 for all -������ � ��� � �)! #p�'x ���/�"�s� do ��H	�
�[\~J:����� � ��� � �
x[%4�]�
-[�|� ?��
� ;
14 for all -������ � ��� � �)! #p�'x ���0� � �"�`� do
15 for all ?�%&����x[%1��� � �
x[% %4���`# do ��H����[\~J ��� � � ��� � �
x[% %4�]�
-[�|��?]�.?�%w��� ;
16 for all -������ � ��� � �)! #p��� % ��� � �/�"�`� do
17 if ?�%&�h� �0%���� � �
xK�"� # then ��H����K\�J �
��� � ��� � �
x[%w�]��-[��� ?�%��.?��
� ;
18 return �
��j��
	 �]#q�
���
lV�O��
��
Fig. 3. An on-the-fly algorithm for solving the grammar problem for the PS subgrammar
from Figure 2.

(PS nonterminals) whose value
���?�� has been updated since it was last considered; in
line 8 all values are set to � . A function call update � ?]�
-[����� computes the new value
for transition ? if ? can be created using rule - and the transitions in the ordered list � .
Lines 9–10 process the rules of types (1) and (2), respectively. Lines 11–17 represent the
fixed-point-finding loop: line 13, 15, and 17 simulate the processing of rules of types (3)
and (4) that involve transition ? on their right-hand side; in particular, line 4 corresponds
to invocations of production functions � $ and � % . Note that line 4 can change

� ?�� only
to a smaller value (w.r.t. $). The iterations continue until the values of all transitions
stabilize, i.e., � Y[I��[Z JO\ is empty.

From the fact that Algorithm 1 is simply a different way of expressing the grammar
problem for the PS subgrammar, we know that the algorithm terminates and computes
the desired result. Moreover, apart from operations having to do with
 , the algorithm
is remarkably similar to the H&I
JK� algorithm from [8]—the only major difference being
that transitions are stored in a workset and processed multiple times, whereas in [8]
each transition is processed exactly once. Thus, the time complexity increases from the� �
P j P � P �>P � complexity of the unweighted case [8] by a factor that is no more than the
length of the maximal-length descending chain in the semiring.

Given the annotated H2I
J � automaton, the value of HS�'? � for any configuration ?
can be read off from the automaton by following all paths by which ? is accepted—
accumulating a value for each path—and taking the meet of the resulting value set.
The value-accumulation step can be performed using a straightforward extension of a
standard algorithm for simulating an NFA (cf. [1, Algorithm 3.4]).

Algorithm 1 is a dynamic-programmingalgorithm for determining HS�'? � ; Appendix A
describes how to extend Algorithm 1 to keep additional annotations on transitions so
that the path set L3�'? � can be obtained.

4 Applications to Interprocedural Dataflow Analysis

This section describes the application of weighted PDSs to interprocedural dataflow
analysis, and shows that the algorithm from Section 3 provides a way to generalize pre-
viously known frameworks for interprocedural dataflow analysis [22, 26]. The running
example used in this section illustrates the application of the approach to linear con-
stant propagation [22]. G. Balakrishnan has also used the approach to implement an
interprocedural dataflow-analysis algorithm due to M. M üller-Olm and H. Seidl, which
determines, for each program point R , the set of all affine relations that hold among
program variables whenever R is executed [16].

Interprocedural Dataflow Analysis, Supergraphs, and Exploded Supergraphs

Interprocedural dataflow-analysis problems are often defined in terms of a program’s
supergraph, an example of which is shown in Figure 4. A supergraph consists of a
int x;

void main()
�

n1: x = 5;
n2,n3: p();

return;
�

void p()
�

n4: if (...)
�

n5: x = x + 1;
n6,n7: p();

n8: x = x - 1;
�
n9: else if (...)

�
n10: x = x - 1;

n11,n12: p();
n13: x = x + 1;

�
return;

�

emain

n1: x = 5

n2: call p

n3: ret from p

xmain

ep

n5: x = x+1

n11: call p

n12: ret from p

xp

n10: x = x−1

n13: x = x+1n8: x = x−1

n6: call p

n7: ret from p

n4: if (. . .)

n9: if (. . .)

n14

t

t

f

f

λe.e[x�⊥]

λe.e[x�5]

λe.e[x��] λe.e[x��]λe.e[x��]

λe.e[x�e(x)+1]

λe.e[x�e(x)+1] λe.e[x�e(x)−1]

λe.e[x�e(x)−1]

Fig. 4. A program fragment and its supergraph. The environment transformer for all
unlabeled edges is ���@� � .
collection of control-flow graphs—one for each procedure—one of which represents
the program’s main procedure. The flowgraph for a procedure p has a unique enter
node, denoted by �

y
, and a unique exit node, denoted by � y . The other nodes of the

flowgraph represent statements and conditions of the program in the usual way,4 except
that each procedure call in the program is represented in the supergraph by two nodes, a
call node and a return-site node (e.g., see the node-pairs �6R � � R�$�� , �6R �;� R���� , �6R � � � R � � �
in Figure 4). In addition to the ordinary intraprocedural edges that connect the nodes
of the individual control-flow graphs, for each procedure call—represented, say, by call
node ? and return-site node - —the supergraph contains three edges: an intraprocedural
call-to-return-site edge from ? to - ; an interprocedural call-to-enter edge from ? to the
enter node of the called procedure; an interprocedural exit-to-return-site edge from the
exit node of the called procedure to - .
Definition 7. A path of length

�
from node � to node R is a (possibly empty) sequence

of
�

edges, which will be denoted by 2 � � � � � �4����� � ��� 7 , such that the source of � � is � , the
target of ��� is R , and for all P ,
�f P f � v
 , the target of edge �HO is the source of edge
� O � � . Path concatenation is denoted by � .

The notion of an (interprocedurally) valid path is necessary to capture the idea that
not all paths in a supergraph represent potential execution paths. A valid path is one
that respects the fact that a procedure always returns to the site of the most recent call.
We distinguish further between a same-level valid path—a path that starts and ends
in the same procedure, and in which every call has a corresponding return (and vice
versa)—and a valid path—a path that may include one or more unmatched calls:

Definition 8. The sets of same-level valid paths and valid paths in a supergraph are
defined inductively as follows:

– The empty path is a same-level valid path (and therefore a valid path).
– Path ��� 2 �47 is a valid path if either (i) � is not an exit-to-return-site edge and� is a valid path, or (ii) � is an exit-to-return-site edge and �q������� 2 � N 7	����
 ,

where ��
 is a same-level valid path, ��� is a valid path, and the source node of � N is
the call node that matches the return-site node at the target of � . Such a path is a
same-level valid path if �
� is also a same-level valid path.

Example 1. In the supergraph shown in Figure 4, the path

��������� # R � # R � # �
y # RT%�# R��3# R � %�# � y # R�$

is a (same-level) valid path; the path

� ������� # R � # R � # �
y # R % # R �

is a (non-same-level) valid path because the call-to-start edge R � # � y has no matching
exit-to-return-site edge; the path

��������� # R � # R � # �
y # RT%�# R��3# R � %�# � y # R��

is not a valid path because the exit-to-return-site edge � y # R�� does not correspond to
the preceding call-to-start edge R � # �

y
.

A context-sensitive interprocedural dataflow analysis is one in which the analysis of
a called procedure is “sensitive” to the context in which it is called. A context-sensitive

4 The nodes of a flowgraph can represent individual statements and conditions; alternatively,
they can represent basic blocks.

analysis captures the fact that calls on a procedure that arrive via different calling con-
texts can cause different sets of execution states to arise on entry to a procedure. More
precisely, the goal of a context-sensitive analysis is to find the meet-over-all-valid-paths
value for nodes of a supergraph [14, 22, 26].

The remainder of this section considers the Interprocedural Distributive Environ-
ment (IDE) framework for context-sensitive interprocedural dataflow analysis [22]. It
applies to problems in which the dataflow information at a program point is represented
by a finite environment (i.e., a mapping from a finite set of symbols to a finite-height do-
main of values), and the effect of a program operation is captured by an “environment-
transformer function” associated with each supergraph edge. The transformer functions
are assumed to distribute over the meet operation on environments.

Two IDE problems are (decidable) variants of the constant-propagation problem:
copy-constant propagation and linear-constant propagation. The former interprets as-
signment statements of the form � ��� and � � � . The latter also interprets statements
of the form ��� v g�� � ��� .

By means of an “explosion transformation”, an IDE problem can be transformed
from a path problem on a program’s supergraph to a path problem on a graph that
is larger, but in which every edge is labeled with a much simpler edge function (a
so-called “micro-function”) [22]. Each micro-function on an edge � � #�� � captures
the effect that the value of symbol � � in the argument environment has on the value
of symbol � � in the result environment. Figure 5 shows the exploded representations of
four environment-transformer functions used in linear constant propagation. Figure 5(a)

Λ

Λ

v.vλv.vλv.vλ

x y

x y

Λ

Λ

v.vλ

v.vλλv.7

x y

x y

Λ

Λ

v.vλ v.vλ

x y

x y

v.vλ

Λ

Λ

v.vλ

λv.−2*v+5

v.vλ

x y

x y

(a) 	�

�
 (b) 	�

�
�� �������� (c) 	�
��
�� �����
���� �!� (d) 	�

�
�� ����#"%$'&(
��)� �+*-,.�
Fig. 5. The exploded representations of four environment-transformer functions used in
linear constant propagation.
shows how the identity function /10�2 0 is represented. Figure 5(b)–Figure 5(d) show the
representations of the functions /10�2 0 3 465798
: , /+0�2 0 3 ;<57=0 >?4A@B: , and /+0�2 0 3 ;C57EDGFIH0�>!4A@KJML�: , which are the dataflow functions for the assignment statements 4ON68 , ;PN<4 ,
and ;QNRDGFSH�4TJUL , respectively. (The V vertices are used to represent the effects of
a function that are independent of the argument environment. Each graph includes an
edge of the form VC7WV , labeled with /+X12 X ; these edges are needed to capture function
composition properly [22].)

Figure 6 shows the exploded supergraph that corresponds to the program from Fig-
ure 4 for the linear constant-propagation problem.

From Exploded Supergraphs to Weighted PDSs

We now show how to solve linear constant-propagation problems in a context-sensitive
fashion by defining a generalized pushdown reachability problem in which the paths
of the (infinite-state) transition system correspond to valid paths in the exploded super-
graph from >Y0[Z]_^a`cbdV]@ . To do this, we encode the exploded supergraph as a weighted
PDS whose weights are drawn from a semiring whose value set is the set of functions

e(fhg N�i�/+j_2lknmpoqi�/1jr2)>!s�Htj+Jvuw@yx{z}|[s{~M�}b�u%~��Ib and z�~-�G��(m�2

emain

n1: x = 5

n2: call p

xmain

ep

n5: x = x+1

xp

n10: x = x−1

n13: x = x+1n8: x = x−1

n4: if (. . .)

n9: if (. . .)

n14

t

t

f

f

ΛΛΛΛ x

ΛΛΛΛ

λl.5
λl.l+1

λl.l+1λl.l−1

λl.l−1

x

n3: ret from p n7: ret from p n12: ret from p

n6: call p n11: call p

λl.⊥

Fig. 6. The exploded supergraph of the program from Figure 4 for the linear constant-
propagation problem. The micro-functions are all id, except where indicated.

Every function / � l�� N v N �
G� � W can be represented by a triple ���&�'���
? � , where � ��� ,
�3��� , ?d������ , and

/ � �
.�
	 �

if
(� ���� �
 ���O� � ? otherwise

The third component ? is needed so that the meet of two functions can be represented.
(See [22] for details.) The semiring value � is �
.� � ; the semiring value
 is the identity
function, whose representation is �.
��'�R� � � . We also denote the identity function by id.
By convention, a constant function �
G� � is represented as �����'��� � � .

The operations � and 	 are defined as follows:

��� � �'� � �
? � ���k��� � �'� � �
? � � ��
�

��
��� � �
� � �
? � �@? � � if � � �"� � and � � �!� �
��� � �
� � �
? � where ?<�h��� � �
 � ��� � ���@? � �@? � �

if
 � �h��� � v � � ���S��� � v � � �"����G
��'�R���.� otherwise

��� � �'� � �
? � ��	k��� � �'� � �
? � � ������� � � � � �]�|��� � �(� � ��� � �O�|����� � ��? � ��� � � �^? � ��� �
Here it is assumed that �T� � � � � �b� � � � � � � �*� � for ����� �� and that
� ��� ���C� � � � ��� ����� � ��� for �`��� � . The second case for the combiner
operator is obtained by equating the terms � � �]�*� � � and � � ��� ��� � and taking the
solution for � , provided it is integral.

The control locations correspond to the program’s variables (and also to �). Stack
symbols, such as R % , R�� and R � , correspond to nodes of the supergraph.

With one exception, each edge in the exploded supergraph corresponds to one rule
of the weighted PDS. The encoding can be described in terms of the kinds of edges that
occur in the supergraph.

A few of the weighted PDS’s rules for the (exploded) intraprocedural edges are as
follows:

Intraprocedural edges in main� ��� R � � ! # � �3� R � � id� ��� R � � ! # �	�(� R � � �
.� �� ��� R $ � ! # � �3��� ������� � id� �(� R�$|�)! #p�	�(�����������0� id

Intraprocedural edges in p� �3� R % �)! #p� �3� R��|� id�	�(� R % �)! # � ��� R���� id� �3� R��|�)! #p� �3� R � � id�	�(� R � �)! # � ��� R ��� �
.�
 �"

In a rule such as � �(� R����)! # �	�(� R � � �
.�
 �"
 (1)

the second component of each tuple implies that the currently active procedure is p, and
the rest of the stack is not changed.

At each call site, each PDS rule that encodes an edge in the exploded representation
of a call-to-enter edge has two stack symbols on its right-hand side. The second symbol
is the name of the corresponding return-site node, which is pushed on the stack:

Transitions for call site R �
� ��� R � �)! #c� ��� � y R $ � id� �(� R � �)! # �	�(� � y R $ � id

Transitions for call site R �� ��� R � �)! #p� ��� � y R � � id� ��� R � �)! # � ��� � y R � � id

Transitions for call site R � �
� �3� R � � �)! #p� ��� � y R � � � id�	�(� R � � �)! # � ��� � y R � � � id

The process of returning from p is encoded by popping the topmost stack symbols off
the stack.

Transitions to return from p� �3��� y � ! #p� ������� id�	�(�
� y �)! #c� �(� ��� id

Obtaining Dataflow Information from the Exploded Supergraph’s Weighted PDS
For linear constant propagation, we are interested in a generalized reachability problem
from configuration � �3� � �������R� . Thus, to obtain dataflow information from the exploded
supergraph’s weighted PDS, we perform the following steps:

– Define a regular language
�

for the configurations of interest. This can be done by
creating an automaton for

�
, and giving each edge of the automaton the weight id.

– Apply Algorithm 1 to create a weighted automaton for H&I
J:��� � � .
– Inspect the H&I
JK��� � � -automaton to find the transition � ������� 	v�v�vRv # ��
�

J~H&\
����� ZC\-�[\~J .

Return the weight on this transition as the answer.
In the following, we often write � ���p�U� , where � is a regular expression, to mean

the set of all configurations � ������� where � is in the language of stack contents defined
by � .

Example 2. For the query H2I
J � ��� ��� � y �&R � � R��|� � R�$|��� , the semiring value associated
with the configuration � ��� � ������� � is �
G�l� , which means that the value of program vari-
able � must be � whenever p is entered with a stack of the form “ �

y �6R � � R � �
� R $ ”;
i.e., main called p, which then called itself recursively an arbitrary number of times,
alternating between the two recursive call sites.

A witness-path set for the configuration � �3� � � ����� � is a singleton set, consisting of
the following path:

Semiring value Configuration Rule Rule weight����� � ���������!
" #%$ ���&�����!
" #'$)(*+���&��, � $ id����� � �����-, � $ ���&�-, � $.(*+��/0�-, � $ ���1� �
id

��/2�
, � $ ��/2�-, � $)(*+��/0���435,067$
id

id
��/2�8� 3 , 6 $

Configuration accepted by query automaton

Example 3. One example of a situation in which the stack is of the form
� y �6R � � R � �
� R $ is when main calls p at R � (R $); p calls p at R � (R �); and finally p
calls p at R � � (R � �). In this case, the stack contains �

y R � � R � R $. As expected, for the
query H&I
J[�K�
� ��� � y R � � R � R $ ��� , the semiring value associated with the configuration� ��� � ������� � is �
G�l� .

In this case, a witness-path set for the configuration � ��� � � �����R� is a singleton set,
consisting of the following path:

Semiring value Configuration Rule Rule weight���1� � ���&��� �!
" # $ ����� � �
" # $)(* �����-, � $ id���1� � ���&�-, � $ ������, � $)(*+��/2�-, � $ ���1� �
id

��/2�8, � $ ��/2�8, � $)(* ��/2�-�43�, 67$
id

id
��/2�-� 3 , 6 $ ��/2�-� 3 $)(* ��/0�8, � $ id

id
��/2�8, � , 67$ ��/2�8, � $)(* ��/2�8,��4$

id
id

��/2�8, � , 6 $ ��/2�8, � $)(* ��/2�8,��7$ ���1� ���	�
���1� ��
�� ��/2�8,�� , 6 $ ��/2�8,��7$)(* ��/2�-� 3 ,�
4$

id���1� ��
�� ��/2�-�43�,
 , 67$ ��/2�-�73 $)(* ��/0�8, � $ id���1� ��
�� ��/2�8, � ,�
., 6 $ ��/2�8, � $)(* ��/2�8,��7$
id���1� ��
�� ��/2�8, � ,
 , 67$ ��/2�8, � $)(* ��/2�8, ��� $ id���1� ��
�� ��/2�8, ��� ,�
 , 6 $ ��/2�8, ��� $)(* ��/2�-, � � $ ���1� ��
��

id
��/2�8, � � ,
 , 67$ ��/2�8, � � $)(* ��/2���435, � � $ id

id
��/2�-� 3 , � � ,�
., 6 $

Configuration accepted by query automaton

Notice that the witness-path set for the configuration � ��� � �������R� is more compli-
cated in the case of the query H&I
J;�K�
� �(� � y R � � R�� R�$|��� than in the case of the queryH&I
JK�����	�(� � y �6R � � R��|�
� R�$���� , even though the latter involves a regular operator.

Example 4. Conventional dataflow-analysis algorithms merge together (via meet, i.e.,
�) the values for each program point, regardless of calling context. The machinery
described in this paper provides a strict generalization of conventional dataflow analysis
because the merged information can be obtained by issuing an appropriate query.

For instance, the value that the algorithms given in [14, 22, 26] would obtain for the
tuple �	�(� � y � can be obtained via the query H&I
J;�K�
� ��� � y �6R���� R � � �
� R�$���� . When we
perform this query, the semiring value associated with the configuration � ��� � �������R� is
�
.� � . This means that the value of program variable � may not always be the same when� is entered with a stack of the form “ �

y �6R�� � R � � �
� R�$ ”. For this situation, a witness-
path set for the configuration � �3� � ��������� consists of two paths, which share the first four
configurations; the semiring value associated with �	�(� � y R $ � is �
.� � � id � �
G�
 v
 :

Semiring value Configuration Rule Rule weight���1� � ���&� � �!
" # $ ����� � �
" # $)(* �����-, � $ id���1� � ���&��, � $ ������, � $)(* ��/2�8, � $ ���1� �
���1� � ��/2�-, � $ ��/2�8, � $)(* ��/2�-�43�, 67$

id���1� � ��/2��� 3 , 6 $
id

��/2��� 3 , 6 $
Configuration accepted by query automaton

���1� ��
�� ��/2���435, 67$ ��/2�-�73 $)(* ��/0�8, � $ id���1� ��
�� ��/2�-, � , 6 $ ��/2�8, � $)(* ��/2�8,��7$
id���1� ��
�� ��/2�-, � , 67$ ��/2�8, � $)(* ��/2�8, ��� $ id���1� ��
�� ��/2�-, ��� , 6 $ ��/2�8, ��� $.(* ��/2�-, � � $ ���1� ��
��

id
��/2�-, � � , 67$ ��/2�8, � � $.(* ��/2���435, � � $ id

id
��/2��� 3 , � � , 6 $

Configuration accepted by query automaton

The Complexity of the Dataflow-Analysis Algorithm
Let � denote the number of edges in the supergraph, and let �b�[I denote the number
of symbols in the domain of an environment. The encoding of an exploded supergraph
as a PDS leads to a PDS with �b�[I control locations and P �>P ���)D��b�[I rules. If

�
is the regular language of configurations of interest, assume that

�
can be encoded by

a weighted automaton with P j^P �������b�KI states and ? transitions. Let
 denote the
maximal length of a descending chain in the semiring formed by the micro-functions.

The cost of a H&I
J�� query to obtain dataflow information for
�

is therefore no worse
than

� ��� � D��b�KI#D�� D
 �	�R�[I $ D�� D
�� time and
� ���#D��b�KI D��!�
�R�[I �

D��!� ?�� space,
according to the results of Section 3 and [8].

How Clients of Dataflow Analysis Can Take Advantage of this Machinery
Algorithm 1 and the construction given above provide a new algorithm for interprocedu-
ral dataflow analysis. As demonstrated by Examples 2, 3, and 4, with the weighted-PDS
machinery, dataflow queries can be posed with respect to a regular language of initial
stack configurations, which provides a strict generalization of the kind of queries that
can be posed using ordinary interprocedural dataflow-analysis algorithms.

For clients of interprocedural dataflow analysis, such as program optimizers and
tools for program understanding, this offers the ability to provide features that were
previously unavailable:

– A program optimizer could make a query about dataflow values according to a pos-
sible pattern of inline expansions. This would allow the optimizer to determine—
without first performing an explicit expansion—whether the inline expansion would
produce favorable dataflow values that would allow the code to be optimized.

– A tool for program understanding could let users pose queries about dataflow in-
formation with respect to a regular language of initial stack configurations.

The first of these possibilities is illustrated by Figure 7, which shows a transformed
version of the program from Figure 4. The transformed program takes advantage of
the information obtained from Example 2, namely, that in Figure 4 the value of � is �
whenever p is entered with a stack of the form “ �

y �&R � � R � �
� R $ ”. In the transformed
program, all calls to p that mimic the calling pattern “ �&R � � R � �
� R $ ” (from the orig-
inal program) are replaced by calls to H % . In H/% , a copy of H has been inlined (and
simplified) at the first recursive call site. Whenever the calling pattern fails to mimic
“ �6R � � R � �
� R $ ”, the original procedure p is called instead.

5 Related Work
Several connections between dataflow analysis and model checking have been estab-
lished in past work [27, 28, 23, 6]. The present paper continues this line of inquiry, but
makes two contributions:

– Previous work addressed the relationship between model checking and bit-vector
dataflow-analysis problems, such as live-variable analysis and partial-redundancy
elimination. In this paper, we show how a technique inspired by one developed in
the model-checking community [3, 8]—but generalized from its original form [25]—
can be applied to certain dataflow-analysis problems that cannot be expressed as
bit-vector problems.

– Previous work has used temporal-logic expressions to specify dataflow-analysis
problems. This paper’s results are based on a more basic model-checking primitive,
namely H2I
JK� . (The approach also extends to HRY[Z]\C� .)

These ideas have been illustrated by applying them to linear constant propagation,
which is not expressible as a bit-vector problem.

int x;

void main()
�

x = 5;
p’();
return;

�

void p()
�

if (...)
�

x = x + 1;
p();
x = x - 1;

�
else if (...)

�
x = x - 1;
p();
x = x + 1;

�
return;

�

void p’()
�

if (...)
�

if (...)
�

// Inlined call n6,n7
x = 7;
p(); // n6,n7; n6,n7

�
else if (...)

�
p’(); // n6,n7; n11,n12

� // End inlined call n6,n7
�
else if (...)

�
x = 4;
p();

�
x = 5;
return;

�

Fig. 7. A transformed version of the program from Figure 4 that takes advantage of the
fact that in Figure 4 the value of � is � whenever � is entered with a stack of the form
“ �
y �&R � � R��|�
� R�$ ”.

Bouajjani, Esparza, and Toulli [4] independently developed a similar framework,
in which H2I
JK� and HRY[ZC\ � queries on pushdown systems with weights drawn from a
semiring are used to solve (overapproximations of) reachability questions on concurrent
communicating pushdown systems. Their method of obtaining weights on automaton
transitions significantly differs from ours. Instead of deriving the weights directly, they
are obtained using a fixpoint computation on a matrix whose entries are the transitions
of the H&I
J�� automaton. This allows them to obtain weights even when the semiring
does have infinite descending chains (provided the extender operator is commutative),
but leads to a less efficient solution for the finite-chain case. In the latter case, in the
terms of Section 4, their algorithm has time complexity

� �
��� �;� � �:-[��D � D � �;- � ?�� � D
� D � �:- D|� � � � �:-K�>D
�� , i.e., proportional to

� �:- � and � $. All but one of the semirings
used in [4] have only finite descending chains, so Algorithm 1 applies to those cases
and provides a more efficient solution.

The most closely related papers in the dataflow-analysis literature are those that
address demand-driven interprocedural dataflow analysis.

– Reps [19, 18] presented a way in which algorithms that solve demand versions
of interprocedural analysis problems can be obtained automatically from their ex-
haustive counterparts (expressed as logic programs) by making use of the “magic-
sets transformation” [2], which is a general transformation developed in the logic-
programming and deductive-database communities for creating efficient demand
versions of (bottom-up) logic programs, and/or tabulation [29], which is another
method for efficiently evaluating recursive queries in deductive databases. This ap-
proach was used to obtain demand algorithms for interprocedural bit-vector prob-
lems.

– Subsequent work by Reps, Horwitz, and Sagiv extended the logic-programming ap-
proach to the class of IFDS problems [20].5 They also gave an explicit demand al-
gorithm for IFDS problems that does not rely on the magic-sets transformation [11].

– Both exhaustive and demand algorithms for solving a certain class of IDE problems
are presented in [22]. The relationship between the two algorithms given in that
paper is similar to the relationship between the exhaustive [20] and demand [11]
algorithms for IFDS problems.

– A fourth approach to obtaining demand versions of interprocedural dataflow-
analysis algorithms was investigated by Duesterwald, Gupta, and Soffa [7]. In their
approach, for each query a collection of dataflow equations is set up on the flow
graph (but as if all edges were reversed). The flow functions on the reverse graph
are the (approximate) inverses of the forward flow functions. These equations are
then solved using a demand-driven fixed-point-finding procedure.

None of the demand algorithms described above support the ability to answer a query
with respect to a user-supplied language of stack configurations. As with previous work
on dataflow analysis, those algorithms merge together (via meet, i.e., �) the values for
each program point, regardless of calling context. In addition, past work on demand-
driven dataflow analysis has not examined the issue of providing a witness set of paths
to show why the answer to a dataflow query for a particular configuration has the value
reported.

The IFDS framework can be extended with the ability to answer a query with re-
spect to a language of stack configurations by applying the reachability algorithms for
(unweighted) PDSs [3, 8] on the graphs used in [20, 11]; however, that approach does
not work for the more general IDE framework. This paper has shown how to extend the
IDE framework to answer a query with respect to a language of stack configurations,
using our recent generalization of PDS reachability algorithms to weighted PDSs [25].

It should be noted that, like the algorithms from [22], the algorithm for solving GPR
problems given in Section 3 is not guaranteed to terminate for all IDE problems; how-
ever, like the algorithms from [22], it does terminate for all copy-constant-propagation
problems, all linear-constant-propagation problems, and, in general, all problems for
which the set of micro-functions contains no infinite descending chains. The asymp-
totic cost of the algorithm in this paper is the same as the cost of the demand algorithm
for solving IDE problems from [22]; however, that algorithm is strictly less general than
the algorithm presented here (cf. Example 4).

An application of the theory of PDSs to interprocedural dataflow analysis has been
proposed by Esparza and Knoop [9], who considered several bit-vector problems, as
well as the faint-variables problem, which is an IFDS problem [21, Appendix A]. These
problems are solved using certain H&I
J � and HRY[ZC\ � queries. With respect to that work, the
extension of PDSs to weighted PDSs allows our approach to solve a more general class
of dataflow-analysis problems than Esparza and Knoop’s techniques can handle; the
witness-set generation algorithm can also be used to extend their algorithms. (Esparza
and Knoop also consider bit-vector problems for flow-graph systems with parallelism,
which we have not addressed.)

M üller-Olm and Seidl have given an interprocedural dataflow-analysis algorithm
that determines, for each program point R , the set of all affine relations that hold among
program variables whenever R is executed [16]. This method can be re-cast as solving

5 Logic-programming terminology is not used in [20]; however, the exhaustive algorithm de-
scribed there has a straightforward implementation as a logic program. A demand algorithm
can then be obtained by applying the magic-sets transformation.

a GPR problem (with the same asymptotic complexity). G. Balakrishnan has created a
prototype implementation of this method using the WPDS library [24].

Model checking of PDSs has previously been used for verifying security proper-
ties of programs [10, 12, 5]. The methods described in this paper should permit more
powerful security-verification algorithms to be developed that use weighted PDSs to
obtain a broader class of interprocedural dataflow information for use in the verification
process.

Acknowledgments

We thank H. Seidl for making available reference [16].

References

1. A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and Tools. Addison-
Wesley, 1985.

2. F. Bancilhon, D. Maier, Y. Sagiv, and J. Ullman. Magic sets and other strange ways to
implement logic programs. In Proceedings of the Fifth ACM Symposium on Principles of
Database Systems, New York, NY, 1986. ACM Press.

3. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Ap-
plication to model checking. In Proc. CONCUR, volume 1243 of Lec. Notes in Comp. Sci.,
pages 135–150. Springer-Verlag, 1997.

4. A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis of concurrent
programs with procedures. In Proc. Symp. on Princ. of Prog. Lang., pages 62–73, 2003.

5. H. Chen and D. Wagner. MOPS: An infrastructure for examining security properties of
software. In Conf. on Comp. and Commun. Sec., November 2002.

6. P. Cousot and R. Cousot. Temporal abstract interpretation. In Symp. on Princ. of Prog. Lang.,
pages 12–25, 2000.

7. E. Duesterwald, R. Gupta, and M.L. Soffa. Demand-driven computation of interprocedural
data flow. In Symp. on Princ. of Prog. Lang., pages 37–48, New York, NY, 1995. ACM Press.

8. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model check-
ing pushdown systems. In Proc. Computer-Aided Verif., volume 1855 of Lec. Notes in Comp.
Sci., pages 232–247, July 2000.

9. J. Esparza and J. Knoop. An automata-theoretic approach to interprocedural data-flow anal-
ysis. In Proceedings of FoSSaCS’99, volume 1578 of LNCS, pages 14–30. Springer, 1999.

10. J. Esparza, A. Kučera, and S. Schwoon. Model-checking LTL with regular valuations for
pushdown systems. In Proceedings of TACAS’01, volume 2031 of LNCS, pages 306–339.
Springer, 2001.

11. S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural dataflow analysis. In Proceed-
ings of the Third ACM SIGSOFT Symposium on the Foundations of Software Engineering,
pages 104–115, New York, NY, October 1995. ACM Press.

12. T. Jensen, D. Le Metayer, and T. Thorn. Verification of control flow based security properties.
In 1999 IEEE Symposium on Security and Privacy, May 1999.

13. S. Jha and T. Reps. Analysis of SPKI/SDSI certificates using model checking. In IEEE
Comp. Sec. Found. Workshop (CSFW). IEEE Computer Society Press, 2002.

14. J. Knoop and B. Steffen. The interprocedural coincidence theorem. In Int. Conf. on Comp.
Construct., pages 125–140, 1992.

15. U. Moencke and R. Wilhelm. Grammar flow analysis. In H. Alblas and B. Melichar, editors,
Attribute Grammars, Applications and Systems, volume 545 of Lec. Notes in Comp. Sci.,
pages 151–186, Prague, Czechoslovakia, June 1991. Springer-Verlag.

16. M. Müller-Olm and H. Seidl. Computing interprocedurally valid relations in affine programs.
Tech. rep., Comp. Sci. Dept., Univ. of Trier, Trier, Ger., January 2003.

17. G. Ramalingam. Bounded Incremental Computation, volume 1089 of Lec. Notes in Comp.
Sci. Springer-Verlag, 1996.

18. T. Reps. Demand interprocedural program analysis using logic databases. In R. Ramakrish-
nan, editor, Applications of Logic Databases. Kluwer Academic Publishers, 1994.

19. T. Reps. Solving demand versions of interprocedural analysis problems. In P. Fritzson, editor,
Proceedings of the Fifth International Conference on Compiler Construction, volume 786 of
Lec. Notes in Comp. Sci., pages 389–403, Edinburgh, Scotland, April 1994. Springer-Verlag.

20. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph
reachability. In Symp. on Princ. of Prog. Lang., pages 49–61, New York, NY, 1995. ACM
Press.

21. T. Reps, M. Sagiv, and S. Horwitz. Interprocedural dataflow analysis via graph reachabil-
ity. Tech. Rep. TR 94-14, Datalogisk Institut, Univ. of Copenhagen, 1994. Available at
“http://www.cs.wisc.edu/wpis/papers/diku-tr94-14.ps”.

22. M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis with applica-
tions to constant propagation. Theor. Comp. Sci., 167:131–170, 1996.

23. D. Schmidt. Data-flow analysis is model checking of abstract interpretations. In Symp. on
Princ. of Prog. Lang., pages 38–48, New York, NY, January 1998. ACM Press.

24. S. Schwoon. WPDS – a library for Weighted Pushdown Systems, 2003. Available from
http://www7.in.tum.de/ � schwoon/moped/#wpds.

25. S. Schwoon, S. Jha, T. Reps, and S. Stubblebine. On generalized authorization problems. In
Comp. Sec. Found. Workshop, Wash., DC, 2003. IEEE Comp. Soc.

26. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In S.S. Much-
nick and N.D. Jones, editors, Program Flow Analysis: Theory and Applications, chapter 7,
pages 189–234. Prentice-Hall, Englewood Cliffs, NJ, 1981.

27. B. Steffen. Data flow analysis as model checking. In Int. Conf. on Theor. Aspects of Comp.
Softw., volume 526 of Lec. Notes in Comp. Sci., pages 346–365. Springer-Verlag, 1991.

28. B. Steffen. Generating data flow analysis algorithms from modal specifications. Sci. of
Comp. Prog., 21(2):115–139, 1993.

29. D.S. Warren. Memoing for logic programs. Communications of the ACM, 35(3):93–111,
March 1992.

A Generation of Witness Sets
Section 3.3 gives an efficient algorithm for determining HS�'?|� ; this section addresses the
question of how to obtain L3��? � . It may help to think of this problem as that of examining
an infinite graph

�
whose nodes are pairs ��?[�d� � , where ? is a configuration and � a value

from � , and in which there is an edge from �'? � �d� � � to ��? � � � � � labeled with ->� � if
and only if ? � 587
9� �;, ? � and /U�'-K��	C� � � � � . For a given configuration ? , finding L3��? �
means identifying a set of paths 1 � �4�����|��1X5 such that path 1 O ,
@f PVf�� , leads from
some �'?[� �NO1� to some ��?KO
��
�� , where ?�O`� G , and I 5O�� � �NO � HS�'?|� . In other words,
L3�'? ��� N61 � �4���4�O��1 5 W proves that HS��? � really has the value computed by Algorithm 1.
We note the following properties:

– In general, � may be larger than
 , e.g., we might have a situation where HS�'? �V�
� � �O� � because of two paths with values � � and � � , but there may be no single path
with value � � ��� � .

– We want to keep L3�'? � as small as possible. If a witness set contains two paths 1 �
and 1 � , where 9&��1 � � $ 9&��1 � � , then the same set without 1 � is still a witness set.

Like HS��? � , L3�'?|� will be given indirectly in the form of another annotation (called
R) on the transitions of

iVy|{�}
�
. We use two data structures for this, called wnode and

wstruc. If ? is a transition, then R � ?�� holds a reference to a wnode. (We shall denote a
reference to some entity � by 2 �47 .) A wnode is a set of wstruc items. A wstruc item is
of the form �!�0�42 ?P7��42 -47����T� where �*� � , 2 ?P7 is a reference back to ? , -T�n� is a rule,

Algorithm 2
1 procedure update(?]�
-[���)
2 begin
3 # LM� # � N4?CW ;
4 � LM�J/U�=-K��	
����z�G
�����	"�����8	

���z�
P � P ��� ;
5 �VLM���!�0�42 ?P7��42 -47��|�HR � ?�%w�<P8?�%/� �`��� ;
6 if
���?�� $v� then return;
7 if R � ?�� � � �x� or ���
���?�� then
8 create RbL�� N �KW ;
9 else

10 create RbL���� ��� ��� ����J ��� � N ��W�� , where R � ?���� 2 � 7 ;
11 R ��?���L�� 2 R>7�T
12

� ?��"L��

� ?������0T
13 � YKI���Z J \ LM� � Y[I��[Z JO\ � N4?CW
14 end

Fig. 8. Modified update procedure.

and � contains a sequence of references to wnodes. References may be �0�x� , indicating
a missing reference.

We can now extend Algorithm 1. The idea is that during execution, if R ��?����:2 � 7 ,
then

� ?���� I W����
	
�� �
	 7 � � �(ZPQ�
 � . An item �!�0�42 ?P71�62 -67���� � in � denotes the following: Sup-
pose that � y|{~}
� has an accepting path starting with ? , and ? is the configuration accepted
by this path. Then, in the pushdown system, there is a path (or rather, a family of paths)
with value � from ? to some ? %)��G , and this path starts with - . An accepting path (in
� y|{�} �) for a successor configuration can be constructed by replacing ? with the transi-
tions associated with the wnodes in � .

The concrete modifications to Algorithm 1 are as follows: In line 8, set R � �0�x� . In
line 9, create a wnode RbLM��N:�.
��42 ?P7�� � �x���������]W for every ?��`# � and set R ��?��"LM� 2 R>7 .

Figure 8 shows a revised update procedure. Line 4 of Figure 8 computes the newly
discovered value for transition ? , and line 5 records how the new path was discovered.
In line 6, if
���?�� $ � , the update will not change
���?�� and nothing further needs to
be done. If ���
���?�� (see line 8), the new addition is strictly smaller than any path
to ? so far, and R ��?�� only has to reference the new path. If � and

� ?�� are incomparable,
line 10 creates a new set consisting of the previous paths and the new path. Even though
� is incomparable to

� ?�� , � might approximate ($) one or more elements of � . The
procedure minimize (not shown) removes these.

It is fairly straightforward to see that the information contained in � allows the
reconstruction of a witness set involving ? (see above). Moreover, every wnode cre-
ated during execution contains references only to wnodes created earlier. Therefore, the
process of reconstructing the witness set by decoding wnode/wstruc information must
eventually terminate in a configuration from G .

During execution of the modified algorithm, several wnodes for the same transition ?
can be created; only one of them is referenced by ? at any moment, although the other
wnodes may still be referenced by other transitions. A garbage collector can be used to
keep track of the references and remove those nodes to which there is no longer any
chain of references from any transition.

